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Definition (The minimum rank of a graph over a field)

A matrix M represents a graph G if
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e

There are many matrices that represent a graph.
Denote mr(F, G).
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Example (mr(F2, C5) = 3)
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Thus, mr(F2, C5) ≤ 3.
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Example (mr(F2, C5) = 3)

a

b

c d

e

Thus, mr(F2, C5) ≥ 3.
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Motivation

(geometric) multiplicity
of an eigenvalue λ

of a matrix A which represents a graph G
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Motivation

the (geometric) multiplicity
of an eigenvalue λ
= nullity(A− λI)
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Motivation

the (geometric) multiplicity
of an eigenvalue λ
= nullity(A− λI)
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Motivation

the maximum multiplicity of an eigenvalue λ
= maxnullity(A− λI)
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Motivation

max multiplicity of λ

= maxnullity(A− λI)
= |V (G)| −min rank(A− λI)
= |V (G)| −mr(G) (∵ A− λI represents G)

Thus,

mr(G) = |V (G)| −max multiplicity of λ
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Some properties

Some properties

The miminum rank of G is at most 1 if and only if G can be
expressed as the union of a clique and an independent set.

A path P is the only graph of minimum rank |V (P )| − 1.

For a cycle C, mr(C) = |V (C)| − 2.

If G′ is an induced subgraph of G, then mr(G′) ≤ mr(G).
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Known results

Theorem(Barrett, van der Holst, and Loewy, 2004)

Let G be a graph. Then, mr(R, G) ≤ 2 if and only if G is
(P4,n, dart, P3 ∪K2, 3K2,K3,3,3)-free.

Theorem(Hogben and van der Holst, 2006)

Let G be a 2-connected graph. Then, mr(R, G) = n− 2 if and
only if G has no K4-, K2,3-, or T3-minor.

n dart T3
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Known results

Theorem(Ding and Kotlov, 2006)

If F is a finite field, then for every k, the set of graphs of mininum
rank at most k is characterized by finitely many forbidden induced

subgraphs, each on at most
(
|F|k
2 + 1

)2
vertices.

Remark

mr(F2,K3,3,3) = 2

mr(R,K3,3,3) = 3
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Random graph

We consider the Erdős-Rényi random graph G(n, p).
The vertex set of a random graph G(n, p) is {1, 2, · · · , n} and
two vertices are adjacent with probability p independently at
random.
Given a graph property P, we say that G(n, p) possesses P
asymptotically almost surely, or a.a.s. for brevity, if the probability
that G(n, p) possesses P converges to 1 as n goes to infinity.
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Known results

The minimum rank of a random graph over a field.

R† F2
‡

G(n, 1/2) 0.147n < mr < 0.5n n−
√
2n ≤ mr

G(n, p) cn < mr < dn

† Hall, Hogben, Martin, and Shader, 2010
‡ Friedland and Loewy, 2010
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Known results

The minimum rank of a random graph over a field.

R† F2
‡

G(n, 1/2) 0.147n < mr < 0.5n n−
√
2n ≤ mr

G(n, p) cn < mr < dn !!!

† Hall, Hogben, Martin, and Shader, 2010
‡ Friedland and Loewy, 2010
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Our results

Let p(n) be a function s.t. 0 < p(n) ≤ 1
2 and np(n) is increasing.

We prove that the minimum rank of G(n, 1/2) and G(n, p(n))
over the binary field is at least n− o(n) a.a.s.
We have two different proofs.

Theorem (using the 1st method)

mr(F2, G(n, 1/2)) ≥ n−
√
2n− 1.01 a.a.s.

mr(F2, G(n, p(n))) ≥ n− 1.483
√
n/p(n) a.a.s. (

√
2 ln 3)

Theorem (using the 2st method)

mr(F2, G(n, 1/2)) ≥ n− 1.415
√
n a.a.s.

mr(F2, G(n, p(n))) ≥ n− 1.178
√
n/p(n) a.a.s. (

√
2 ln 2)
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Our results

Theorem (J., C.Lee, P.Loh, S.Oum, 2013+)

Let p(n) be a function s.t. 0 < p(n) ≤ 1
2 and np(n) is increasing.

mr(F2, G(n, 1/2)) ≥ n−
√
2n− 1.01 a.a.s.

mr(F2, G(n, p(n))) ≥ n− 1.178
√
n/p(n) a.a.s.
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Future work

R F2

G(n, 1/2) 0.147n < mr < 0.5n n−
√
2n ≤ mr

G(n, p) cn < mr < dn (p fixed) n− 1.178
√
n/p(n) ≤ mr

A nontrivial upper bound of the minimum rank of a random
graph over the binary field is an open question.

The minimum rank of a random graph over the other fields is
unknown.

The minimum rank of a random graph G(n, p) is unknown.

Is the minimum rank problem NP-complete??
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Thank you.
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Our results

Let p(n) be a function s.t. 0 < p(n) ≤ 1
2 and np(n) is increasing.

We prove that the minimum rank of G(n, 1/2) and G(n, p(n))
over the binary field is at least n− o(n) a.a.s.
We have two different proofs.

Theorem (using the 1st method)

mr(F2, G(n, 1/2)) ≥ n−
√
2n− 1.01 a.a.s. (Proof)

mr(F2, G(n, p(n))) ≥ n− 1.483
√
n/p(n) a.a.s.

Theorem (using the 2st method)

mr(F2, G(n, 1/2)) ≥ n− 1.415
√
n a.a.s.

mr(F2, G(n, p(n))) ≥ n− 1.178
√
n/p(n) a.a.s.
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Sketch of the proof

Theorem

Let F2 be the binary field and G
(
n, 12

)
be a random graph. Then,

mr

(
F2, G

(
n,

1

2

))
≥ n−

√
2n− 1.01

asymptotically almost surely.

Sketch of the proof.
G = G(n, 1/2)
Gn : a set of all graphs with a vertex set {1, 2, · · · , n}
Sn(F2) : a set of all n×n symmetric matrices over the binary field
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There can be many different matrices representing the same graph.
If one of them has rank less than r, then the minimum rank of this
graph is less than r. Thus,∑

mr(F2,H)<r
H∈G2

P[G = H] ≤
∑

rank(N)<r
N∈M

P[G = G(N)].

Let M be an n× n random symmetric matrix s.t.
every entry on or above the main diagonal of M is 1 with 1/2.
For N ∈ Sn(F2), we have

P[G = G(N)] = 2nP[M = N ]

because the diagonal entries are decided with probability 1/2
independently at random.
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Therefore, we have

P[mr(F2, G) < n− L] =
∑

mr(F2,H)<n−L
H∈G

P[G = H]

≤
∑

rank(N)<n−L
N∈M

P[G = G(N)]

= 2n
∑

rank(N)<n−L
N∈M

P[M = N ]

= 2nP[rank(M) < n− L]
= 2nP[nullity(M) > L].

It is enough to show that P[nullity(M) >
√
2n+ 1.0] is o(1/2n).

So, we focus on P[nullity(M) = L].
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Lemma

Let Mi be an i× i random symmetric matrix such that every entry
in the upper triangle and diagonal of Mi is 1 with probability 1

2
independently at random. And let Pi,k be the probability that Mi

has nullity k. Then, P1,0 = P1,1 = P2,0 =
1
2 , P2,1 =

3
8 , P2,2 =

1
8 ,

Pi,−1 = 0 for all i, Pi,k = 0 for all i < k, and

Pi,k =
1

2
Pi−1,k +

1

2i
Pi−1,k−1 +

1

2
(1− 1

2i−1
)Pi−2,k

for i ≥ 3, k ≥ 0.
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